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The case-crossover design was proposed for the study of a
transient effect of an intermittent exposure on the subsequent
occurrence of a rare acute-onset disease. This design can be an
alternative to Poisson time series regression for studying the
health effects of fine particulate matter air pollution. Charac-
teristics of time-series of particulate matter, including long-
term time trends, seasonal trends, and short-term autocorrela-
tions, require that referent selection in the case-crossover
design be considered carefully and adapted to minimize bias.
We performed simulations to evaluate the bias associated with
various referent selection strategies for a proposed case-cross-

over study of associations between particulate matter and pri-
mary cardiac arrest. Some a priori reasonable strategies were
associated with a relative bias as large as 10%, but for most
strategies the relative bias was less than 2% with confidence
interval coverage within 1% of the nominal level. We show
that referent selection for case–crossover designs raises the
same issues as selection of smoothing method for time series
analyses. In addition, conditional logistic regression analysis is
not strictly valid for some case–crossover designs, introducing
further bias. (Epidemiology 2001;12:186–192)
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The case-crossover design is suited to the study of a
transient effect of an intermittent exposure on the sub-
sequent risk of a rare acute-onset disease hypothesized to
occur a short time after exposure. In the original devel-
opment of the method,1,2 effect estimates were based on
within-subject comparisons of exposures associated with
incident disease events with exposures at times before
the occurrence of disease, using matched case-control
methods or methods for stratified follow-up studies with
sparse data within each stratum. The principle of the
analysis is that the exposures of cases just before the
event are compared with the distribution of exposure
estimated from some separate time period. This distri-
bution is assumed to be representative of the distribution
of exposures for those individuals while they are at risk
of developing the outcome of interest.

The health effects of fine particulate matter air pol-
lution (PM) is a topical epidemiologic issue for which
the case-crossover design may be especially useful. Fine
particulate air pollution is an exposure that varies over
time, and there is concern that PM may affect the
incidence of acute cardiovascular and respiratory disease
events.3–5 Extensive time series of daily air pollution
measures for metropolitan regions are often available for
air pollution research. Most previous studies of the rela-
tion of air pollution and health events have been Pois-
son regression time-series analyses of health events.6–8

The use of alternative analytic approaches and statis-
tical models may improve causal inferences about air
pollution effects. In particular, when measurements of
exposure or potential effect modifiers are available on an
individual level, it is possible to incorporate this infor-
mation into a case-crossover study unlike a time-series
analysis. A disadvantage of the case-crossover design,
however, is the potential for bias due to time trends in
the exposure time-series.9 Since case-crossover compar-
isons are made between different points in time, the
case-crossover analysis implicitly depends on an assump-
tion that the exposure distribution is stable over time
(stationary). If the exposure time-series is non-stationary
and case exposures are compared with referent exposures
systematically selected from a different period in time, a
bias may be introduced into estimates of the measure of
association for the exposure and disease. These biases are
particularly important when examining the small asso-
ciations that appear to exist between PM and health
outcomes.
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There are two ways in which the average PM level is
not stationary over time, leading to possible bias. Long-
term time trend occurs as pollution levels change grad-
ually from year to year. When PM levels are increasing
over time, eg from increased traffic, systematically select-
ing referents from an earlier period when pollution levels
tend to be lower will give a positive bias; if PM levels are
decreasing, eg owing to increased regulation, the bias
will be negative. Figure 1 shows an example of a declin-
ing long-term trend in the Seattle PM data. In addition,
there are distinct seasonal differences in PM levels. For
example, Figure 1 shows that PM is highest in the
winter, when rates of mortality and many forms of mor-
bidity are higher for other reasons. Thus, long-term and
seasonal trends may result in confounding.

Navidi10 described an approach for addressing time-se-
lection bias in case-crossover analyses — the ambidirec-
tional case-crossover design — for exposures with time
trends. When the occurrence of disease events does not
affect subsequent exposure, as is the case with time-series of
environmental exposures such as air pollution, Navidi pro-
posed that all exposure times, before and after an index
event, should be used as referents. By balancing referent
exposures before the event with referent exposures that
occur subsequent to the event, the time-selection bias due
to linear time trend that occurs with unidirectional sam-
pling is canceled out. Simulations by Bateson and
Schwartz11 show that the gross biases from seasonal varia-
tion can also be alleviated by choosing referents from a
shorter period of time both before and after the case time.

Short-term (6 days or less) autocorrelation in PM
time series is another concern. It is likely due to weather
patterns that affect ambient PM concentration through
source generation and accumulation in the atmosphere.
Selecting referents from time adjacent to the case event
times is conceptually similar to overmatching in con-
ventional case-control studies.

This paper is based on simulations undertaken to
explore the nature and degree of time-selection bias and
to examine the ability of various strategies to counter
biases anticipated in a case-crossover analysis of the
association of fine particulate air pollution and out-of-
hospital primary cardiac arrest. Simulation data are pat-

terned on data from a population-based case-control
study of 362 primary out-of-hospital sudden cardiac ar-
rest that occurred in King County Washington from
October 3, 1988 to June 25, 1994.12 The strategies we
considered are displayed graphically in Figure 2. The
main strategy to be tested is that of using an ambidirec-
tional referent sampling window restricted to 30 days
before and after the occurrence of a case event (Figure
2C). Additionally, a 6-day window around the case
event day excluding potential referent days is defined to
address potential bias from short-term autocorrelation in
the exposure time series (Figure 2D).

An alternative strategy was devised based on concern
that short-term autocorrelation between the referents
themselves may also be a source of bias in the estimates.
The original strategy described above was elaborated
further by requiring that there be a 6-day autocorrelation
exclusion period between all observations used in the
analysis. We believed that this requirement would allow
for the necessary independence among all observations
and would control for day-of-week effects on PM expo-
sures. The alternative fixed interval strategies select
referents only among lags (ie days before the index
event) and leads (ie days after the index event) of 7, 14,
21, and 28 days (Figure 2E and 2F).

In addition to bias, statistical precision is important
for analyses of health effects of air pollution that char-
acteristically have small relative risks and a limited num-
ber of cases. Multiple referents may allow us to extract
the maximum amount of information from the data.
Since we can use pre-existing exposure time-series data,
referents are cheap and optimal statistical efficiency
dominates cost considerations. Our initial goal was to
examine the variation in statistical precision that occurs
as a function of the number of referents by exploring
various analysis strategies. To our surprise, bias surfaced
a the single dominant factor in the simulations. Thus,
we focus on bias in this paper.

Methods
Data for particulate matter air pollution were ob-

tained from the Puget Sound Clean Air Agency for
October 3, 1988 through June 25, 1994. Daily averages
of fine particulate matter air pollution as measured by
nephelometer were used. The particle light scattering
extinction coefficient (bsp) measured by a nephelometer
is an excellent proxy for daily variation in gravimetric
measures of PM in the Seattle area, with a correlation of
0.94–0.95 between PM2.5 and bsp at three individual
monitoring sites in the Seattle area.13–15 We averaged
observations from these three sites (Lake Forest Park,
Duwamish, and Kent) to provide daily measures of ex-
posure for the region. The study period had an average
light scattering coefficient of 0.64 3 1021 kilometers21.
The range was .09 to 3.7 with values of 0.3, 0.47, and
0.81 at the first, second, and third quartiles. We per-
muted this data series to permit the evaluation of the
effect of serial correlation on estimation by reordering
the data by randomly sampling without replacement of
the entire original data series.

FIGURE 1. PM for study period showing long-term trend
and seasonal pattern.
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We simulated the occurrence of events. Reflecting the
actual case series to be used in the analysis, 362 events
were distributed over the 2,092-day time period as a
function of exposure on day j. The probability that an
event occurred at time tj is given by the proportional
hazards model,

l 5 h~t,x! 5 h0~t!ebx, (1)

where the coefficient, b, was specified based on an
incidence density ratio, exp(b), of 1.5 per interquartile
range (IQR) change in bsp:

b 5 ln~1.5!/IQR.

This hazard ratio is larger than those previously observed in
air pollution time series studies. It was anticipated15 that for
the specific, well-characterized outcome of primary cardiac
arrest, the hazard ratio would be substantially larger than
observed for more heterogeneous outcomes such as cardio-
vascular mortality. The interquartile range (IQR) for the
CAB study period is 0.51 3 10-1km-1 bsp, so a hazard ratio
of 1.5/IQR gives b 5 0.795.

It is important to note that these simulations are not
confounded by seasonal variation: outcome depends on
time only through exposure. The simulations of Bateson
and Schwartz11 address seasonal confounding, and as we
discuss below, it can also be addressed analytically.

Nine series of simulations were performed. The first
series to assess the nature of time-selection bias used fixed
retrospective single day lags: 365, 180, 90, 60, 30, 21, 14, 7,
and 1 day before case events. Subsequent series were de-
signed to assess the ability of various referent selection
strategies to counter bias. All were restricted to selecting
referents from some subset of the 30 days preceding and
following the case event. The second series involved ret-
rospective referent selection within the prior 30 days of the
case event using 1, 2, 4, 10 randomly selected (with re-
placement) days, or all 30 days in the referent selection
sampling frame (Figure 2A). The third series involved
retrospective referent selection with the 6-day exclusion
period using 1, 2, 4, 10 randomly selected days, or all 24
days in the referent selection sampling frame (Figure 2B).
The fourth series involved ambidirectional referent selec-
tion without the 6-day exclusion period using 1, 2, 4, 10
randomly selected days, or all 60 days in the referent
selection sampling frame (Figure 2C). The fifth series in-
volved ambidirectional referent selection with the 6-day
exclusion period using 1, 2, 4, 10 randomly selected days, or
all 48 (61–13) days in the referent selection sampling frame
(Figure 2D). The sixth and seventh series repeated the
fourth and fifth series with permuted data. At the sugges-
tion of a reviewer, a 10th simulation with data repermuted
for each iteration was performed, using ambidirectional

FIGURE 2. Referent selection strategies. (A) Series 2; retrospective referent selection within the 30-days prior to the case event. (B)
Series 3; retrospective referent selection within the 30-days prior to the case event, with a 6-day autocorrelation exclusion period. (C)
Series 4; ambi-directional referent selection. (D) Series 5; ambi-directional referent selection, with 6-day autocorrelation exclusion
periods. (E) Series 8; retrospective fixed-interval referent selection. (F) Series 9; ambi-directional fixed-interval referent selection.
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referent selection without the 6-day exclusion period, using
10 randomly selected days. These permuted data series
allow some examination of the role of trend and autocor-
relation in the results.

The eighth and ninth series involved a referent selec-
tion strategy in which all cases and referents were re-
quired to be separated by 6 days within the 630 day
window. The eighth series retrospectively selected ref-
erents with 7; 7 and 14; 7, 14 and 21; and 7, 14, 21 and
28 day lags (Figure 2E). The ninth series ambidirection-
ally selected referents with 7; 7 and 14; 7, 14 and 21; and
7, 14, 21 and 28 day leads and lags (Figure 2F).

We calculated IQR relative risks and 95% confidence
intervals for each iteration. We defined coverage as the
percentage of simulations where the 95% confidence
interval contained the true relative risk parameter. All
analyses were performed in S-PLUS (MathSoft, Seattle).
For the simulations of retrospective referent sampling at
fixed lags, we did 10,000 iterations; all other simulations
were iterated 1,000 times. Standard errors and confi-
dence intervals for the mean of the individual estimated
coefficients are based on the number of iterations.

Results
Here we concentrate on bias in case-crossover analy-

ses. A more complete presentation of these simulations
can be found in Levy.14 Results are given for the coeffi-
cient estimate b̂.

Figure 3 shows estimates of the association of PM and
the incidence of events that occur when various single

specific fixed lags are chosen to define the referent
exposure. A lag of 1 year is associated with a negative
24% bias, with only 67% of the 95% confidence inter-
vals for each of the estimates in the 10,000 iterations
containing the value of the true coefficient. Lags of half
a year through 1 month are biased in the range of 2.7 to
0.7%. A 21-day lag for referents is negatively biased by
2 to 3%, whereas lags 7 and 14 have biases of less than
1%. The 1-day lag is positively biased by 2.6–3.8%.

Choosing retrospective referent exposures from
within a 30-day lag window shows a pattern of bias that
is a function of the number of referents chosen (Table 1,
series 2). A single referent is relatively unbiased. Choos-
ing 10 referents randomly within the 30-day window
improves the precision by one third (not shown), but is
associated with a bias of 5 to 6%. Using all 30 days in the
sample frame is associated with a bias of 3 to 4%. This
pattern of increasing bias with the number of referents is
exacerbated when the 6-day autocorrelation exclusion
period is included in the definition of the sample frame
(Table 1, series 3). With the 6-day exclusion, using 10
referents is associated with a positive bias of 12–14%.

Ambidirectional random sampling of referents within
the 630-day window results in a positive bias of 4% or
less for all number of referents without the 6-day exclu-
sion period (Table 1, series 4). For the ambidirectional
series with the 6-day exclusion period (Table 1, series 5
and Figure 4), the bias begins in the range of 2% and
increases with the number of referents to 9–10% with 10
referents. With the 6-day exclusion period, using all

FIGURE 3. Series 1. Historical referent selection. FIGURE 4. Series 5. Ambidirectional referent selection
with 6-day exclusion.

TABLE 1. Multiple Referent Days: Percent Bias in b̂ for Varying Numbers of Referents Sampled at Random from a
Restricted Time Window

Series

Referent Sampling Number of Referents

Timing Excl. Order 1 2 4 10 all

2 Retrospective None Orig. 21.8–0.5 20.5–1.5 2.1–3.8 4.7–6.1 2.7–4.0
3 Retrospective 6-day Orig. 21.7–0.6 1.9–3.8 6.6–8.3 12.3–13.8 11.6–13.0
4 Ambidirectional None Orig. 1.7–4.1 0.9–2.8 1.3–2.9 2.0–3.4 0.2–1.5
5 Ambidirectional 6-day Orig. 1.6–3.9 3.3–5.2 4.7–6.3 8.8–10.2 6.1–7.4
6 Ambidirectional None Perm. 20.1–1.7 0.3–1.7 0.7–1.8 1.7–2.5 20.4–0.3
7 Ambidirectional 6-day Perm. 0.1–1.9 0.2–1.6 0.8–1.9 2.7–3.6 0.6–1.3

Excl., exclusion; Orig., original; Perm., permutation.
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available days in the sampling frame as referents results
in a bias of 6–7%, and yields coverage of only 88%.

Using permuted data to remove serial correlation from
the time series results in biases in the range of 20.1–2%
for 4 referents or less, regardless of whether the 6-day
exclusion period is used (Table 1, series 6 & 7). For 10
referents, however, the bias is 1.7–2.5% without the
66-day exclusion (series 6), and 2.7–3.6% with the
66-day exclusion (series 7). Using all days in the win-
dow as referents in the permuted data yields an unbiased
estimate without the 66-day exclusion, and 0.6–1.3%
bias with the 66-day exclusion. Repermuting the data
for each simulation yielded a bias of 2.0% for 10 con-
trols, compared to 2.1% using a single fixed permutation.

Table 2 gives the bias estimates for the fixed-interval
referent selection strategy. Both strategies show a mono-
tonically changing pattern of bias. For the strategy lim-
ited to retrospective referents (series 8), the single 7-day
lag is unbiased, but an increasing negative bias as large as
22.1 to 23.7% is evident as the 14, 21, and 28 day lags
are included. For the strategy with ambidirectional ref-
erents (series 9 and Figure 5), the 7-day lead and lag is
biased by 1.5–3.4%, and this bias progressively disap-
pears as 14, 21, and 28 lead and lag days are added.

Discussion
These simulations focus on the nature of time selec-

tion bias and the effect of various schemes for referent
selection in air pollution case-crossover analyses by con-
trasting three factors: 1) retrospective vs ambidirectional
sampling, 2) the use of an exclusion to reduce short-term
autocorrelation, and 3) the number of referents used.

We also evaluated the influence of time-series patterns
and serial correlation by permuting the data series. We
observed complex patterns of bias in these simulations.
We believe these complex patterns are the result of
multiple competing sources of bias.

Overall, these simulations revealed distinct and some-
times substantial biases in most of the referent sampling
strategies studied. While seeming sensible a priori, de-
signing referent selection with restrictions specifically
chosen to mitigate some forms of bias anticipated in
analysis of PM time-series data would have been mis-
guided (eg series 5). This approach could have led to bias
in the range of 6–10% with 10 or more referents if
employed in a naive analysis. Other plausible referent
selection strategies produced entirely negligible bias. It is
important to gain further insight into the sources of the
biases observed, but it appears that they are likely to be
relatively unimportant in practice.

TIME-SELECTION BIAS PATTERNS

The retrospective single fixed referent lag day series
(series 1) reveals a non-monotonic pattern of bias. The
extreme bias at the 365-day lag is qualitatively consis-
tent with the expectation for the effect of a declining
long-term time trend. If referents are systematically cho-
sen from a period of time that tends to have higher
exposure, then a bias toward the null is expected, as was
observed. The positive bias of 2–3% seen for referent
lags of 180, 90, and 60 days is qualitatively consistent
with what might be expected for seasonal influences on
referent exposure values, confounded to an unknown
extent by the negative effect of long-term time trend. If
cases tend to occur during the high air pollution seasons,
choosing lags large enough to place referents in other
seasons should make the referent exposures relatively
lower. This selection bias would lead to the observed
exaggeration of the estimated measure of association.
The positive 1% bias seen at the 30-day referent lag
suggests that there may be some small seasonal influence
even at that proximity to the case event. The negative
bias seen at the 21-day referent lag and, to a lesser
extent, at the 14-day lag, indicates that for some un-
known reason the referent exposures at those lags sys-
tematically tend to be greater than expected. This result
may be related to cyclical weather patterns that influ-
ence local air pollution levels. The 7-day referent lag
(seen also in series 8) seems to be unbiased while the
1-day referent lag shows a substantial positive bias.
Overall, this complex pattern of biases indicates that
there may be many patterns in the time series data that

can influence effect estimation in var-
ious ways.

AMBIDIRECTIONAL VERSUS

RETROSPECTIVE SAMPLING

The original conception of the case-
crossover design was retrospective
since referents were chosen from times
that preceded the event. This restric-

FIGURE 5. Series 9. Fixed-interval ambidirectional referent
selection.

TABLE 2. Simulation Results: Percent Bias in b̂ with Fixed Interval (Week-
ly) Referent Selection

Referent Sampling Number of Lag or Lead/Lag Weeks

Series Timing 1 1 1 2 123 124

8 Retrospective 21.3–1.1 21.4–0.4 22.0–20.4 23.7–22.1
9 Ambidirectional 1.5–3.4 0.2–1.8 0.3–1.8 21.0–0.4
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tion is necessary when outcomes that may affect subse-
quent exposures are studied. In these situations, sam-
pling referent times after event times could result in
reverse-causation bias. For example, if exposure tended
to decrease as a consequence of an event, using post-
failure referent information could tend to bias risk esti-
mates upward. The study of environmental exposure
effects (as opposed to behavioral exposure effects) has
the advantage that exposure levels subsequent to the
event are unaffected by the event occurrence. Combined
with a rare disease assumption this implies that one can
use post-event exposures as referents.10,11

With the limitations of sampling within a narrow
time interval, there is a tension between precision and
bias. Restriction to a sampling window of 30 days serves
the purpose of limiting the bias due to seasonality and
coincidentally limits the influence of long-term time
trend, which should be negligible in this relatively small
window. A potential benefit of ambidirectional referent
sampling in this context is to double the size of the
sampling frame and permit a greater number of referents
to be chosen. In the absence of bias, the greater number
of referents provides a small but possibly valuable im-
provement in precision, as the variance of an estimator
with m controls is proportional to m/(m 1 1). To main-
tain comparability between the designs, we did not take
advantage of the opportunity to use more controls with
ambidirectional sampling.

CONDITIONAL LIKELIHOODS USED IN ESTIMATION

PARAMETERS FOR MATCHED CASE-CONTROL STUDIES

The fact that bias is still observed when the exposure
series is permuted to remove any patterns shows that the
bias cannot be entirely explained by seasonal variation
or autocorrelation. A more careful mathematical analy-
sis16 shows that conditional logistic regression itself is
inappropriate for these choices of referents. This phe-
nomenon can be understood best in the context of a
description of the conditional logistic regression estima-
tion methods typically employed. The conditional like-
lihood17 used in maximum likelihood estimation of re-
gression parameters is based on comparing the case risk
only to the risk of its referents. The conditional likeli-
hood formula (LC) reflects the probability of the ob-
served data configuration relative to the probability of
all possible permutations of the data configuration:

LC 5
Pr~observed configuration!

Pr~all possible configurations of the data!
. (2)

In an ideal matched case-control study, the controls are
sampled independently and with equal probability from
the stratum of the population containing the case. The
observed configuration is that in which the case’s expo-
sure Xi0 belongs to the case, and the other exposures Xi1,
Xi2, ..., Xim belong to the m controls. This configuration
is compared with all possible other configurations where,
for example, Xi2 is assigned to the case, and Xi0, Xi1, Xi3,

..., Xim to controls. With a single case in each matched
set, the conditional likelihood in Eq 2 reduces to

risk ratio for case
sum of risk ratios for case and controls

where the risk ratio for an exposure X is exp(bX). When
controls are not sampled at random from within the stra-
tum of the case, this conditional likelihood may be invalid
even in a matched case-control study. Austin et al.18 show
that choosing a friend or sibling as the matched control for
each case can lead to bias. This bias is due to selection of
controls from categories that are not mutually exclusive,
leading to a situation in which the exposure of control
subjects does not reflect that of members of the source
population. The bias occurs because exposed individuals
are either more or less likely than unexposed individuals to
be included in multiple strata. Robins and Pike19 consider
this issue in more detail and give conditions for the con-
ditional likelihood to be valid in a case-control study when
controls are not sampled at random.

In some case-crossover designs, random sampling within
mutually exclusive strata does not hold. For the design in
which referents are taken at specific intervals before and
after the case event with the case event in the center of the
referent period, the observed configuration of the data is
the only possible one. The same is true for the traditional
case-crossover design in which the configuration with the
referents before the case is the only one consistent with the
study design. The true conditional likelihood in these de-
signs would be identically equal to 1, so the likelihood used
by conditional logistic regression is not the correct one. As
our simulations show, the bias resulting from this incorrect
conditional likelihood is small but not zero, and may in
some circumstances be important. The bias does not exist
for designs in which the case can occur at any point in the
referent window, such as the original ambidirectional de-
sign proposed by Navidi,10 but his design requires using the
whole study time as the referent period, a requirement that
in air pollution studies could produce confounding by sea-
son. A modified design that avoids seasonal confounding
and gives the correct conditional likelihood can be ob-
tained by dividing the time period a priori into fixed strata
and using the remaining days in a stratum as referents for a
case in that stratum. For example, calendar months could
be used as strata; eg a case on Sunday, December 12, would
be compared with all the other days in December. A finer
stratification could be done on the day of the week as well,
so that only the other Sundays in December would be used.
In this situation, the positions of the cases are not deter-
mined by design, but instead vary randomly within the
strata. We refer to these as time-stratified case-crossover
designs. For further detail on this alternative, see Lumley
and Levy.16 It is also worth noting that this bias should be
zero under the null hypothesis, at least in the absence of
other covariates.16

SEASONAL CONFOUNDING

Our simulations do not include any confounding by
season, but still demonstrate sensitivity to the choice of
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referent periods. This sensitivity will be increased when
confounding by season is present. The choice of referent
period then presents a tradeoff between bias and vari-
ance in the estimated relative risks. In the presence of
autocorrelation, there is less variation in exposure over a
narrow referent window than over a wide one, and so for
any fixed number of referents, the estimation of relative
risks will be less precise for a narrower referent period.
When a wider referent period is chosen, there is more
information about the relative risk but this information
is potentially contaminated by confounding.

The choice of referent period must be made based on
substantive knowledge of the seasonal variability in pol-
lution and mortality or morbidity in the area under
study. This choice is the same as is made in a Poisson
time series analysis when the amount of smoothing is
chosen. In fact, in spite of claims that the two analyses
are different,20,21 a time-stratified case-crossover analysis
without any individual-level time-varying covariates is
mathematically equivalent to a Poisson time series anal-
ysis that uses dummy variables to estimate seasonal ef-
fects. Indicator variables are a crude but effective form of
smoothing. Despite this equivalence the case-crossover
design has the advantage of presenting the restriction in
time in a way more familiar to epidemiologists.

Conclusions
The bias observed in this simulation study is predom-

inantly positive. The nature of the bias may be different
in other studies in which the autocorrelation in the time
series, disease risk, correlation of events in time, and
sampling designs may be different. In particular it should
be noted that any variation in exposure between indi-
viduals will reduce the bias from improper conditioning,
and that this bias would be negligible if different indi-
viduals had completely independent exposure histories
(though other forms of bias might still be present).

For practical purposes this bias is relatively unimpor-
tant, and published ambidirectional case-crossover stud-
ies20,21 that have chosen the referent days far enough
apart to remove local autocorrelation should give reli-
able results (if our observations can be extrapolated) as
demonstrated by the fixed interval strategy (series 9). It
will often be indistinguishable from the finite sample
bias inherent in estimating the regression parameter
(compare Figures 3 and 4 in Lumley and Levy16). For
future air pollution studies, modifying the design by
partitioning the data a priori into mutually exclusive
categories (true strata) rather than selecting potentially
overlapping referent windows removes the bias com-
pletely,16 providing a valid and elegant design.

Our simulation results show that three design features
are useful for unbiased estimation. Unbiased estimation
with conditional logistic regression requires dividing
time into strata defined a priori and using the remainder
of eligible days in each stratum as the referents for a case
in that stratum, rather than selecting potentially over-
lapping referent windows centered at the time of each
case event. If this approach cannot be taken, then sea-

sonality and long-term time trend in the PM time series
can be effectively removed by restriction of the sample
frame for referents to a period short enough to be free of
significant seasonal transitions. Furthermore, restricting
the referent sampling window to require a 6-day interval
between all exposures (the third design feature) ensures
independence among observations and, more important
in practice, controls for day of the week effects.

The latter two design features will also help control
confounding by season and by day of the week. This
confounding was not present in our simulations but will
be important in real case-crossover analyses of air pol-
lution data, and could cause much larger biases than
those we have shown.
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